Ensembles finis Exemples

Déterminer la nature des racines en utilisant le discriminant x(x+3)-2=3x+23
Étape 1
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Appliquez la propriété distributive.
Étape 1.1.1.2
Multipliez par .
Étape 1.1.1.3
Déplacez à gauche de .
Étape 1.2
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Soustrayez des deux côtés de l’équation.
Étape 1.2.2
Soustrayez des deux côtés de l’équation.
Étape 1.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1.1
Soustrayez de .
Étape 1.3.1.2
Additionnez et .
Étape 1.3.2
Soustrayez de .
Étape 2
Le discriminant d’une quadratique est l’expression dans le radical de la formule quadratique.
Étape 3
Remplacez les valeurs de , et .
Étape 4
Évaluez le résultat pour déterminer le discriminant.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
L’élévation de à toute puissance positive produit .
Étape 4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.2
Additionnez et .
Étape 5
La nature des racines de la quadratique peut entrer dans l’une des trois catégories selon la valeur du discriminant  :
signifie qu’il existe racines réelles distinctes.
signifie qu’il existe racines réelles égales ou racine réelle distincte.
signifie qu’il n’y a pas de racine réelle, mais racines complexes.
Comme le discriminant est supérieur à , il y a deux racines réelles.
Deux racines réelles